8.6 Solving Logarithmic Equations

A Exponential-Logarithmic Conversion
The following two expressions are equivalent:

$$
\begin{array}{ll}
b^{x}=y \Leftrightarrow & x=\log _{b} y \\
b>0, b \neq 1 ; & y>0, x \in R
\end{array}
$$

Ex 1 . Solve for x. Verify restrictions.
a) $\log x=0$
b) $\ln x=1$
c) $\log _{2}(x-1)=0$
d) $\log \left(x^{2}+1\right)=1$
e) $\ln (\log x)=0$

Ex 2. Solve for x. Verify restrictions.
a) $\log (x-1)=\log (2 x+1)$

$$
\begin{aligned}
& \log _{b} x=\log _{b} y \Leftrightarrow x=y \\
& b>0, b \neq 1, x>0, y>0
\end{aligned}
$$

a) $\log (x-1)=\log (2 x+1)$
b) $\ln (x+1)-\ln (x-1)=3$
C) $\log _{2}(x-1)+\log _{2}(x+2)-\log _{2}(2 x-1)=1$
d) $\log x=1-\log (x-3)$

Ex 3. Use technology (scientific calculator) to find the solution of the following equation to the nearest thousandth.
$\ln x+\log x=5$

Ex 4. Solve for x.
d) $\log _{2}(x-4)+\log _{\sqrt{2}}\left(x^{3}-2\right)+\log _{0.5}(x-4)=20$
a) $\log _{2}\left(x^{2}\right)=\left(\log _{2} x\right)^{2}$
b) $(\log x)^{2}-\log x^{2}+1=0$
e) $4 \log \sqrt{x}-5 \sqrt{\log x}=3$
c) $\log _{x-1}(4 x-4)=2$

D Inequalities and Logarithms

If $b>1$ then:

$$
\log _{b} x>\log _{b} y \quad \Leftrightarrow \quad x>y
$$

If $b<1$ then:

$$
\log _{b} x>\log _{b} y \quad \Leftrightarrow \quad x<y
$$

Ex 5. Solve each inequality.
a) $\log x>1$
b) $\ln (x-1)<0$
C) $\log _{0.5}(2 x+1) \geq 2$
d) $\log _{0.1} x^{2} \leq-1$

Reading: Nelson Textbook, Pages 487-490
Homework: Nelson Textbook, Page 491: \#4acf, 5ace, 6, 7ad, 8, 10, 12, 16, 18, 19, 20
8.6 Solving Logarithmic Equations

